www.ijpra.comISSN: 2249-7781, Volume 3, Issue 2 (July) 2018), PP. 10-23

Plant Based Treatment of Hepatotoxicity

Gayyur Fatima^a, Mahaveer Dhobi^{a*}

^aDelhi Pharmaceutical Sciences and Research University Sector-III, Pushp Vihar, Mehrauli Badarpur Road, New Delhi- 110017, India Corresponding Author: Dr. Mahaveer Dhobi

ABSTRACT: Most of the anti-cancer, anti-tumor and other class of synthetic medicines cause severe adverse effects on the health of human beings especially on the liver. Liver is the organ that metabolizes most of the drugs which are administered orally. While metabolizing other drugs, liver gets affected and synthetic medicines become a cause for liver diseases and hepatotoxicity. According to a report of WHO, about 75 % or three quarters of the world's population use herbs and medicinal plants to cure liver diseases. Plant medicines are with low or zero adverse effects and so can be used by many patients for hepatoprotective effects. Some of the plants which are used as hepatoprotectives are *Andrographic paniculata*, *Aegle marmelos*, *Allium sativum*, *Gymnema sylvestre*, *Pyrenthrum indicum*, *Taraxacum officinale*, *Berberis lyceum*, *Bryonia alba*, *Lycopersicon esculentum*, *Luffa echinata*, *Nigella sativa*, *Ocimum sanctum*, *Terminalia chebula Tinospora cordifolia*, and Zingiber officinale etc. These medicinal plants contain potent phytoconstituents which are of use for the treatment of hepatotoxicity. Therefore in this review, medicinal plants and herbs are collected which are or can be used in liver diseases including hepatotoxicity.

KEYWORD: Liver, Diseases, Hepatotoxicity, Hepatoprotectiv plants etc

Date of Submission: 22-05-2018

Date of acceptance: 07-07-2018

I. INTRODUCTION

Hepatotoxicity

Hepatotoxicity may be defined as the effect of any agent on liver that results in a deviation from normal function, morphology and implies chemical/drug/microbial-driven liver damage.¹

Hepatotoxicity is one of the main reasons behind withdrawal of a drug from the market. Fifty percent of all acute liver failures and 5% of all hospital admissions are associated with drug-induced hepatotoxicity.⁽²⁾ Liver damage is connectd with alteration of these metabolic functions. Liver damage is associated with cellular necrosis, increase in tissue lipid peroxidation and depletion of reduced glutathione levels. In addition, serum levels of many biochemical

markers like transaminases, alkaline phosphatase, bilirubin, triglycerides and cholesterol are elevated in liver disease ⁽³⁾. Liver diseases pose a serious challenge to international public health.⁽⁴⁾

HEPATOTOXICITY CLASSIFICATION

Hepatotoxicity may be classified as the three classes:

(i) the level alanine amino transferase (ALT), that is glutamyl oxalacetic acid transaminase level

in the serum increases three-fold,

(ii) serum alkaline phosphatase (ALP) level increases two-fold

(iii) serum bilirubin (SBLN) level is also elevated two-fold (when serum ALT and ALP levels also increases).

Hepatotoxicity is of three major classes:

(a) Hepatocellular injury: When serum ALT or ALP levels are elevated;

(b) Cholestatic injury: When ALP and bilirubin levels in the serum increases;

(c) Mixed injury: When both the ALT and ALP levels in the serum increases.[5]

Liver being closely associated with the gastrointestinal system receives much of the blood from the portal veins, which drains the xenobiotic compounds to the liver. In the liver, the xenobiotic compounds get activated and forms reactive metabolic species (RMS). The RMS through the oxidative stress pathway damage cellular biomolecules, cause protein dysfunctions and damage to the nucleicacids. Mitochondrial dysfunction results due to RMS mediated disruption of ionic gradients and intracellular Ca2+ storage, causing tissue injury.

www.ijpra.com

Hepatocellular inflammation is another outcome of DIHT. Activated natural killer T (NKT) cells and Kupffer cells secret inflammatory mediators such as tumour necrosis factor (TNF)- α , interferon (IFN)- γ and interleukin (IL)-1 β also promotes tissue damage.^(,6,7,8)

Hepatotoxin is a toxic chemical substance which damages the liver. Toxic liver injury produced by drugs and chemicals may virtually mimic any form of naturally occurring liver disease. Hepatoprotective effect was studied against chemicals and drugs induced hepatotoxicity in rats like alcohol, carbon tetrachloride, galactosamine, paracetamol, isoniazid and rifampicin, antibiotics, peroxidised oil, aflatoxin etc. Severity of hepatotoxicity is greatly increased if the drug is continued after symptoms develop. Among the various inorganic compounds producing hepatotoxicity are arsenic, phosphorus, copper and iron. The organic agents include certain naturally occuring plant toxins such as pyrrolizidine alkaloids, myotoxins and bacterial toxins.⁽⁹⁾

Traditional plants play a important role in the human health care ailmetns. 80% of world populations depend on traditional medicines .Traditional medicines principally based on plant materials ⁽¹⁰⁾. The traditional medicine including folk and tribal follows as well as AYUSH (Ayurveda, Siddha, Amchi, Unani) . The traditional medicine refers to a broad range of ancient natural health care. AYUSH medical practices originated from time immemorial and developed gradually, significantly, by relying or derived from practical experiences devoid of important references to modern scientific principles. These practices incorporated ancient beliefs and were passed on from one generation to another by oral tradition and/or guarded literature. While herbal medicines are effective in the treatment of various ailments very often these drugs are unscientifically exploited and/or improperly used. Therefore, these plant drugs deserve detailed studies in the light of modern science.

Plants are used in India mostly (rural, tribal villages) about 7,500 plants in local health traditions. About 1,200 plants are use in classical system of medicine such as as Ayurveda, Siddha, Amchi, Unani and Tibetan⁽¹¹⁾.

A completed exploration and certification of plants used in local health traditions and pharmacological evaluation of these plants .Plants and their taxonomical links can lead to the development of invaluable plant drugs for many dreaded diseases. Random screening of plants has not proved economically effective^(12,13).

Liver diseases and medicinal plants:

Liver is the main organ, play a essential role in regulation of physiological processes. Liver engaged in numerous fundamental functions such as metabolism, secretion and storage. Also, liver detoxified of a selection of drugs and xenobiotics occurs in liver. An important role of liver in digestions. The bile secreted by the liver has, among other things.⁽¹⁴⁾ Liver injury caused by different infections, certain drugs, environmental and social factors such as alcoholism⁵ resulting in severe pathological conditions such as hepatitis, liver cirrhosis, hepatosis (non inflammatory diseases)⁽¹⁵⁾ etc.

Liver diseases are surrounded by the majority serious disease. Drugs and chemicals can cause a broad spectrum of liver injury. These consist of:

Mild elevations in blood levels of liver enzymes without symptoms or signs of liver disease

Hepatitis (inflammation of liver cells), **Necrosis** (death of liver cells) that often is caused by more severe <u>hepatitis</u>, **Cholestasis** (decreased secretion and/or flow of bile)

Steatosis (accumulation of fat in the liver), Cirrhosis (advanced scarring of the liver) as a result of chronic hepatitis, cholestasis, or fatty liver, Mixed disease, for example both hepatitis and necrosis of liver cells, hepatitis and fat accumulation, or cholestasis and hepatitis., Fulminant hepatitis with severe, life threatening liver failure, Blood clots in the veins of the liver

Liver diseases are mainly caused by toxic chemicals certain antibiotics like Augumentin, cilndamycin, erythromycin, chemotherapeutics likes asparaginase, nitrosureas, vinblastine, peroxidised oil, aflatoxin, carbon-tetrachloride, chlorinated hydrocarbons, etc.), excess consumption of alcohol, infections and autoimmune/disorder.⁽¹⁶⁾

The hepatotoxic chemicals damage liver cells primarily by inducing lipid peroxidation and other oxidative damages in liver. During the liver microsomal metabolism of ethanol, productions of lipid peroxidation increased, caused hepatitis and cirrhosis.⁽¹⁷⁾ It has been approximated that about 90% of the acute hepatitis is due to viruses. The major viral agents involved are Hepatitis B, A, C, D, E and G. Chronic liver diseases and cirrhosis of liver result occure with hepatitis B infection. Hepatitis B virus has also been produced Primary liver cancer.

It has been estimated that approximately 14- 16 million people are infected with this virus in South East Asia region and about 6% of the total population in the region are carriers of this virus. A vaccine has become available for immunization against Hepatitis B virus. Hepatitis C and Hepatitis E infections are also common in countries of South East Asia region.

Liver diseases which are still a global health problem may be classified as acute or chronic hepatitis, hepatosis and cirrhosis, Unfortunately, treatments of choice for liver diseases are controversial because conventional or synthetic drugs for the treatment of these diseases are insufficient and sometimes cause serious side effects. The WHO find out the data around 2.4 million deaths yearly are linked to some liver disease, and that around 800 thousand of these deaths are attributable to cirrhosis.

www.ijpra.com

FAMILY	PLANTS NAME	PARTS USED			
Acanthaceae	Andrographic paniculata (Burm.f.) Wall. ex Nees	Whole plant			
	Asteracantha longifolia Nees.	Leaf, root and seed			
Asclepiadaceae	Hemidesmus indicus R.Br.	Root			
	<i>Gymnema sylvestre</i> (Retz.) R.Br.ex Schult	Leaf			
Asteracceae	Taraxacum officinale F.H. Wigg	Root			
	Pyrenthrum indicum DC. Cichorium intybus L.	Flower			
	Cichortain intyous L.	Whole plant			
Berberidaceae	Berberis lycium Royle	Leaf			
Cucurbitaceae	Bryonia alba Wild Hops Root	Root			
	Luffa echinata Roxb. Fruit and seed	Fruit and seeds			
Euphorbiaceae	Euphorbia neriifolia L.	Fruit			
Fumariaceae.	Fumaria officinalis L.	Whole plant			
Guttiferae	Garcinia indica (Linn.) Robs.	Fruit			
Gentianaceae	Swertia chirata (Wall.) C. B. Clarke	Whole plant			
Labiatae	Mentha longifolia (L.) Huds	Leaf			
Nymphaceae	Nelumbo nucifera Gaertn.	Flower			
Menispermaceae	<i>Tinospora cordifolia</i> (Willd.) Hook. f.	Stem			
Solanceae	Lycopersicon esculentum L.	Fruit			
Zingiberaceae	Zingiber officinale Roxb.	Rhizome			

II. METHODS Some important hepatoprotective medicinal plants mentioned in Ayurveda:

Andrographic Peniculata

Gymnema Sylvestris

Zingiber officinale Roxb.

Hygrophila spinosa T. Ander.

Pyrenthrum Indicum

Apium graveolens L.

Nelumbo nucifera Gaertn.

Berberis lycium Royle

Lycopersicon esculentum L.

Mentha longifolia (L.) Hud

List of hepatoprotctive plants:

SL. No.	Botanical name	Botanical plant (Family)	Parts used	Extract	Hepatotoxic agent	<i>In vivo</i> models	Remarks about liver marker enzymes	References
1	Abutilon bidentatum	(Malvaceae)	Leaves, Flowers	Aqueous methanol	PCT and CCl4	Rabbit	↓ SGPT, SGOT, ALKP and DB	19
2	Aegle marmelos	(Rutaceae)	Leaves	Ethanol	CCl4	Mice	↓ SGPT, SGOT, ALP and DB	20
3	Aerva lanata	(Amaranthaceae)	Leaves	Hydro- alcoholic	РСТ	Rat	↓ levels of AST, ALP, DB and serum TB	21
4	Allium sativum	(Liliaceae)	Fruit	No extract	INH	Rat		22
5	Alcea rosea	(Malvaceae)	Aerial parts	Aqueous methanol	РСТ	Mice	↓ levels of AST, ALP, DB and serum TB	23
6	Aloe barbadensis	(Liliaceae)	Aerial parts	Chloroform, ether and petroleum	CCl4	Mice	↓ AST, ALP and ALT levels. Restored depleted liver thiols	24
7	Aloe vera	(Liliaceae)	Leaves	Aqueous	gamma- hexachlorocy clohexane (Lindane)	Mice	↓ AST, ALP and ALT levels. Restored depleted liver thiols	25
8	Amaranthus caudatus	(Amaranthaceae)	Whole plant	Methanolic extract	РСТ	Rat	↓ ALT, AST, DB, TB and MDA level. ↑ ALB, GSH, TT, TP and CT Levels	26
9	Amaranthus spinosus	(Amaranthaceae)	Whole plant	Ethanol	CCl4	Rat	↓ ALT, AST, DB, TB and MDA level. ↑ ALB, GSH, TT, TP and CT Levels	27
10	Annona squamosa	(Annonaceae)	Leaves	Aqueous ethanol	INH	Rat	\downarrow TB, ALP, AST, ALT and γ-GT and ↑ TP level	28
11	Arachniodes exilis	(Dryopteridaceae)	Rhizome	Ethanol	CCl4	Mice	↓ AST, ALT, ALP and CHL. ↑ antioxidant enzyme activities of SOD, CAT, MDA and GSH	
12	Asparagus racemosus	(Liliaceae)	Whole plant	Crude aqueous	РСТ	Rat	\uparrow LPO, ↓ GSH and SOD	30
13	Baliospermum montanum	(Euphorbiaceae)	Leaves	Alcohol, Chloroform	Thioace- tamide	Mice	↓ in SGOT , SGPT and CHL level	31
14	Berberis lyceum	(Berberidaceae)	Bark	Alcohol	CCl4	Rat	↓ TB, ALP, AST, and ALT levels	32

15	Bixa orellana	(Bixaceae)	Seed	Methanol	CC14	Rat	↓ in SGOT , SGPT and cholesterol level	33
16	Boerhaavia diffusa	(Nyctaginaceae)	Roots	Aqueous	Thioace- tamide	Rat	\downarrow TB, ALP, AST, and ALT and \uparrow TP	34
17	Bombax ceiba	(Bixaceae)	Flowers	Methanol	INH, RMP	Rat	↓ TB, ALP, AST, and ALT and ↑TP	35
18	Bupleurum kaoi	(Umbelliferae)	Roots	Ethanol	Dimethyl nitrosamine	Rat	↓ SGOT , SGPT, ALP, AST and ALT	36

19	Butea monosperma	(Fabaceae)	Flowers	Aqueous	PCT	Rabbit	↓ ALP, AST and37 ALT	Maaz et al., 2010
20	Cajanus cajan	(Fabaceae)	Whole plant	Methanol	CC14	Rat	↓ SGOT , SGPT38 and CHL level	Sing et al., 2011
21	Calotropis procera	(Apocynaceae)	Flower	Aqueous alcohol	РСТ		↓ SGPT, SGOT, 39 ALP, bilirubin and LDLP, ↑ serum levels of HDL and tissue level of GSH.	Setty et al., 2007
22	Carica papaya	(Caricaceae)	Fruit	Aqueous ethanol	CC14	Rat	↓ SGOT, SGPT,40 ALP, AST, ALT and LDH Levels	Sadeque and Begum, 2010
23	Carissa opaca	(Apocynaceae)	Leaves	Methanol	CCl4	Rat	↓ lipid41 peroxidation (TBARS), AST, ALT, ALP, LDH and γGT Levels	Sahreen et al., 2011
24	Carissa spinarum	(Apocynaceae)	Roots	Ethanol	PCT and CCl4	Rat	↓ SGOT, SGPT,42 ALP, AST, ALT and LDH Levels	Hegde and Joshi, 2010
25	Cassia fistula	(Leguminaceae)	Leaves	Ethanol	N-heptane	Rat	\downarrow ALP, AST,43 ALT, LDH and γ -GT	Bhakta et al., 2001
26	Cassia occidentalis	(Caesalpiniaceae)	Leaves	Aqueous ethanol	РСТ	Rat	↓ SGOT, SGPT,44 ALP, AST, ALT and LDH Levels	Rani et al., 2010
27	Casuarina equisetifolia	(Casuarinaceae)	Leaves and Bark	Methanol	CCl4	Rat	↓ SGOT, SGPT45 and cholesterol level	Ahsan et al., 2009
28	Cestrum nocturnum	(Solanaceae)	Leaves	Aqueous ethanol	РСТ	Mice	↓ SGOT, SGPT,46 ALP, AST, ALT and LDH Levels	Qadir et al., 2014
29	Chamomile recutita	(Asteraceae)	Flower	Methanol	CCl4	Rat	↑ Conc. of 47 glutathione in Liver & blood and Na+K+ATPase activity. ↓ ALT, AST, ALP, TB and liver glycogen levels	Gupta et al., 2006
30	Chenopodium murale	(Chenopodiaceae)	Whole plant	Aqueous methanol	РСТ	Mice	↓ ALP, AST,48 ALT and TB levels	Saleem et al., 2014

31	Cinnamomum tamala	(Lauraceae)	Leaves	Methanol	РСТ	Mice	↓ SGOT, SGPT,49 ALP, lipid profile, TB and ↑ TP	Selvam al., 2010	et
32	Clerodendron inerme	(Verbenaceae)	Leaves	Ethanol	РСТ	Rat	↓ SGOT, SGPT, 50 SALP, TB and \uparrow TP levels	Haque et a 2011	ıl.,
33	Coccinia grandis	(Curcubitaceae)	Leaves	Aqueous, Ethanol	CC14	Rat	↓ SGOT, SGPT,51 ALP, TB and CHL levels	Sunilson al., 2009	et
34	Cocculus hirsutus	(Menispermaceae)	Aerial parts	Methanol	Bile duc ligation	Rat	↓ ALT, AST, 52 LDLC, HDL TC and STG. ↑ antioxidant enzyme activities of SOD, CAT, GSH-Px and GST	Thakare al., 2009	et
35	Cochlospermum planchoni	(Coclospermaceae)	Rhizome	Aqueous	CCl4	Rat	↓ ALP, AST and 53 TB Levels	Nafiu et a 2011	ıl.,
36	Convolvulus arvensis	(Convolvulaceae)	Whole plant	Ethanol	РСТ	Mice	↓ ALP, AST,54 ALP and TB levels	Ali et a 2013	al.,

		[L	.	~~~	-		
37	Cordia macleodii	(Boraginaceae)	Leaves	Ethanol	CCl4	Rat	↓ SGPT, SGOT, ALP and TB levels	55
38	Cuscuta chinensis	(Convolvulaceae)	Seeds	Aqueous ethanol	РСТ	Rat	↑ antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH	56
39	Cyathea gigantea	(Cyatheaceae)	Leaves	Methanol	РСТ	Rat	↓ SGPT, SGOT, ALP,TB, TP and reverse the hepatic damage	
40	Decalepis hamiltonii	(Asclepiadaceae)	Roots	Aqueous	Ethanol	Rat	↓ ALT, AST, LDLC, HDL TC and STG. ↑ SOD, CAT, GSH-Px, GST, and GSH	58
41	Dodonaea viscose	(Sapindaceae)	Leaves	Methanol	Alloxan	Rabbit	↓ ALT, AST, LDLC, HDL TC and STG	59
42	Eclipta alba	(Asteraceae)	Whole plant	Ethanol	РСТ	Mice	↓ ALT level, fatty degeneration and centrizonal liver Necrosis	
43	Emblica officinalis	(Phyllanthaceae)	Leaves	Ethanol	CCl4	Rat	↓ ALT, AST, LDLC, HDL TC and STG	61
44	Equisetum arvense	(Equisetaceae)	Aerial parts	Methanol	Tacrine	Hep G2 cells	↓ AST, ALT, TP, TB and ALP levels	62
45	Eucalyptus maculata	(Myrtaceae)	Leaves	Chloroform	PCT	Rats and Mice	I↓ AST, ALT and ALP	63
46	Euphorbia fusiformis	(Euphorbiaceae)	Tubers	Ethanol	RMP	Rat	↓ AST, ALT, ALP, SGPT and SGOT	64
47	Feronia elephantum	(Rutaceae)	Fruit	Aqueous	CCl4	Rat	\downarrow ALT, AST, billirubin level and \uparrow TP levels	65
48	Ficus cordata	(Moraceae)	Roots	Methanol/ ethylacetat e	CC14	Rat	Prevent liver cell death and LDH leakage	66
49	Foeniculum vulgare	(Apiaceae)	Leaves and fruit	Ethanol	CCl4	Rat	↓ AST, ALT, ALP, SGPT and SGOT	67
50	Galium aparine	(Rubiaceae)	whole plant	Alcohol	CCl4	Rat	↓ALP, AST, and ALT Levels	68

51	Glycosmis pentaphylla	(Rutaceae)	Leaves and bark	Methanol	PCT	Mice	↓ in SGOT , SGPT and cholesterol level	69
52	Glycyrrhiza glabra	(Fabaceae)	Roots	Aqueous	CCI4	Rabbit	↑ antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH	70
53	Gundelia tourenfortii	(Asteraceae)	Stalk	Hydro alcoholic	CCl4	Rat	↓ALP, AST, TB and ALT Levels	71

54	Halenia		Whole	Methanol	CCl4	Rat	↓ SGOT, SGPT, ALP,	72
	elliptica	(Gentianaceae)	plant				AST and TB levels	

55	Haloxylon		Aerial	Ethanol	CCl4	Rabbit	↓ SGOT, SGPT,73
	salicornicum	(Chenopodiaceae)	parts				ALP and TB levels
56	Hemidesmus indicus	Apocynaceae	Roots	Methanol	INH and RMP	Rat	↓ ALP, AST, TB73 and ALT
57	Hygrophila auriculata	(Acanthaceae)	Roots	Aqueous	CCl4	Rat	↓ AST , ALT,73 ALP, TB and CHL levels
58	Hypericum japonicum	(Clusiaceae)	Whole plants	Aqueous	CCl4	Mice	↓ SGPT, SGOT,74 AST, ALT and ALP levels
59	Hyptis suaveolens	(Lamiaceae)	Leaves	Aqueous	РСТ	Rabbit	↓ TP and TB75 levels
60	Ipomoea staphylina	(Convolvulaceae)	Levaes	Hydro- alcohol	CC14	Rat	↓ALP, AST,76 ALT, SGPT, SGOT and CHL levels
61	Kohautia grandiflora	(Rubiaceae)	Leaves	Aqueous	РСТ	Rat	↓ AST , ALT,77 ALP, TB and TP
62	Laggera pterodonta	(Asteraceae)	Whole plant	Ethyl alcohol	CCl4	Rat	↓ AST , ALT,78 ALP, TB and TP
63	Launaea procumbens	(Asteraceae)	Whole plant	Methanol	CCl4	Rat	↓ ALT, AST,79 ALP, LDH, LDL, HDL, TC and Triglycerides levels
64	Lepidium sativum	(Brassicaceae)	Whole plant	Methanol	CCl4	Rat	↓ AST , ALT,80 ALP, TB and TP
65	Luffa echinata	(Cucurbitaceae)	Fruit	Petroleum, acetone and methanol	CC14	Rat	↓ SGOT, SGPT,81 ALP and AST levels
66	Momordica dioica	(Cucurbitaceae)	Leaves	Aqueous methanol	CCl4	Rat	↓ ALP, AST, TP82 and ALT
67	Mimosa Pudica	(Mimosaceae)	Leaves	Methanol	CCl4	Rat	↓ AST , ALT,83 ALP, TB and TP. ↓ SGOT, SGPT
68	Moringa oleifera	(Moringaceae)	Roots, flowers	Methanol	INH, RMP PZA	,Rat	↑ Antioxidant84 enzyme activities of SOD, CAT, GSH-Px, GST and GSH. ↓ AST , ALT,

							ALP, TB and TP.↓SGOT, SGPT
69	Nigella sativa	(Ranunculaceae)	Seeds	Alcohol	Galactosa- mine/ lipo- polysacchar ide	Rat	↓ALP, AST, TB,85 TP and ALT
70	Ocimum sanctum	(Lamiaceae)	Leaves	Alcohol	РСТ	Rat	↓ SGPT, SGOT,86 ALT, AST and ALP
71	Phoenix dactylifera	(Arecaceae)	Fruits	Methanol	Thioaceta- mide	Rat	Ameliorated the87 increased level of MDA and decline of GSH and amelioration of ALT, ALP and AST
72	Parkinsonia aculeata	(Fabaceae)	Leaves	Ethanol	РСТ	Rat	↓ SGOT, SGPT,88 LDH, ALP, TB and ↑ TP levels
73	Phyllanthus polyphyllus	(Euphorbiaceae)	Leaves	Methanol	PCT		↓ ALP, AST,87 ALT, SPGT and SGOT levels. ↑ Antioxidant enzyme activities of SOD, CAT, GSH-Px, GST and GSH.
74	Physalis minima	(Solanaceae)	Whole plant	Methanol	CCl4 I		$\begin{array}{c} & \text{SGPT, 89} \\ \downarrow & \text{SGPT, 89} \\ \text{SGOT, LPO,} \\ \text{TP,} \\ \text{ALT, AST} \\ \text{and ALP} \end{array}$
75	Piper chaba	(Piperaceae	Fruit	Aqueous acetone	Galactosa- I mine/lipo- polysaccha- ride		↓ALP, AST,90 ALT, SGPT and SGOT levels
76	Picrorhiza kurroa	(Scrophulariaceae	Roots rhizomes	Ethanol	CCl4	Rat	↓ALP, AST,91 ALT, SGPT, SGOT and CHL levels
77	Phyllanthus emblica	(Euphorbiaceae)	Fruits	Aqueous	PCT	Rat	Significant ↑92 TBC and less necrosis
78	Pistacia integerrima	(Anacardiaceae)	Bark	Ethyl acetate	PCT		↓ ALP, AST,93 and ALT levels
79	Plumbago zeylanica	(Plumbaginacea)	Aerial parts	Methanol	PCT		↓ serum TB,94 SGPT, SGOT and ALP levels
80	Physalis minima	(Solanaceae)	Whole plant	Methanol	CCl4 I	Rat	↓ SGPT,95 SGOT, LPO, TP, ALT, AST and ALP
81	Phyllanthus niruri	(Euphorbiaceae)	Leaves, fruits	Aqueous methanol	PCT	Mice	↑ Antioxidant96 enzyme activities of SOD, CAT, GSH-Px, GST and GSH.

82	Rubia cordifolia	(Rubiaceae)	Roots	Methanol	Thioactami de	Rat	↓ ALP, AST,97 ALT, SPGT and SGOT levels
83	Rumex dentatus	(Polygonaceae)	Whole plant	Aqueous- methanol	РСТ	Mice	↓ ALP, AST,98 TB and ALT levels
84	Rheum emodi	(Polygonaceae)	Roots	Petroleum benzene, chloroform	CCl4	Rat	↓ serum TB,99 TP, SGPT, SGOT, AST and ALP levels
85	Rosa damascene	(Rosaceae)		Aqueous methanol	CCl4	Rat	↓ SGPT, Achuthan SGOT, LPO, et al., TP, 2003 ALT, AST and ALP levels.
86	Solanum nigram (Solanaceae	Solanaceae	Fruit	Ethanol	CCl4	Rat	↓ AST, ALT, Raju et ALP, TP and al., 2003 TB levels
87	Terminalia chebula	Combetraceae	Fruit	Ethanol	RIF, INH, PZA	Rat	↓ AST, ALT, Tasduq et ALP, TP and al., 2006 TB levels
88	Tylophora indica	Asclepiadaceae	Leaf powder	Aqueous alcohol	Ethanol	Rat	↓ AST, ALT, Gujrati et ALP, TP al., 2007 and TB levels
89	Vitis vinifera	Vitaceae	Roots	Ethanol	CCl4	Rat	↓ SGOT,Sharma SGPT, TB,et al., AST, 2012 ALP levels. ↑ CAT and GSH levels
90	Zanthoxylum armatum	Rutaceae	Bark	Ethanol	CCl4	Rat	↓ SGOT,Verma et SGPT, TB,al., 2010 AST, ALP, ↑ CAT, GSH levels

III. CONCLUSION

Liver diseases which are still a global health problem may be classified as acute or chronic hepatitis, hepatosis and cirrhosis. Liver diseases are mainly caused by toxic chemicals such as certain antibiotics like cilndamycin, erythromycin, chemotherapeutics likes asparaginase, nitrosureas, vinblastine, peroxidised oil, aflatoxin, carbon-tetrachloride, chlorinated hydrocarbons, etc. Excess consumption of alcohol, also affects liver. Unfortunately, treatments of choice for liver diseases are controversial because conventional or synthetic drugs for the treatment of these diseases are insufficient and sometimes cause serious side effects. The WHO find out the data around 2.4 million deaths yearly are linked to some liver disease, and that around 800 thousand of these deaths are attributable to cirrhosis. Plant based crude drugs and herbal medicines are need of the hour. Medicinal plants can be used for the treatment of hepatotoxicity because they cause minor or zero said effects and also they have potent phytoconstituents like anti oxidant flavonoides, alkaloids, glycosides, which are beneficial to cure liver insufficiency.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

REFERENCES

- [1]. Guyton H. Textbook of medical physiology, 10th edn, Philadelphia, The Curtis Center Saunders, 2000: 798-801.
- [2]. Dey P, Saha MR, Sen A. An overview on drug-induced hepatotoxicity. Asian J Pharm Clin Res 2013;6(4):1–4. <dnabarcoding. blogspot.com>.
- [3]. Subramaniam S, Khan HBH, Elumalai N, Lakshmi SYS. Hepatoprotective effect of ethanolic extract of whole plant of *Andrographis paniculata* against CCl4-induced hepatotoxicityin rats. Comp Clin Path 2015;24:1–7.
- [4]. Lynch T, Price A. The effect of cytochrome P450 metabolism ondrug response, interactions and adverse effects. Am Fam Physician 2007;76:391-6
- [5]. Navarro VJ, Senior JR. Drug-related hepatotoxicity. N Engl J Med 2006;354:731-9.

- [6]. Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI. Role of pro-inflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 1995;133:43-52.
- [7]. D.Priyankar, S.R.Manas, S. Arnab, Hepatotoxicity and the present herbal hepatoprotective scenario, International Journal of Green Pharmacy-nov-2013,
- [8]. G. Sowjanya*, D.Swarnalatha, T.Shivakala and SK.Mobeena, Hepatoprotective Activity A Review, International Journal of Phytopharmacy Review Article Vol. 3 (2), pp.37-49, Mar-Apr 2013
- [9]. WHO, Regional Office For The Western Pacific, Research Guidelines For Evaluating The Safety And Efficacy Of Herbal Medicines, Manila, WHO, 1993.
- [10]. Pushpangadan P. Role of Traditional Medicine in Primary Health Care. In: Iyengar PK, Damodaran VK, Pushpangadan P, Editors. Science for Health. Published By State Committee On Science, Technology And Environment, Govt. Of Kerala, 1995.
- [11]. Aszalos A, Editor. Antitumor Compounds of Natural Origin. Boca Raton, CRC Press, 1982.
- [12]. https://www.medicinenet.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymes 13.https://www.msdmanuals.com/home/liver-and-gallbladder-disorders/drugs-and-the-liver/liver-injury-caused-by-drugs.
- [13]. WHO, Regional Office For The Western Pacific, Research Guidelines For Evaluating The Safety And Efficacy Of Herbal
- Medicines, Manila, WHO, 1993.
- [14]. Pushpangadan P. Role of Traditional Medicine in Primary Health Care. In: Iyengar PK, Damodaran VK, Pushpangadan P, Editors. Science for Health. Published By State Committee On Science, Technology And Environment, Govt. Of Kerala, 1995.
- [15]. Aszalos A, Editor. Antitumor Compounds of Natural Origin. Boca Raton, CRC Press, 1982.
- $[16]. https://www.medicinenet.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.production.com/drug_induced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.produced_liver_disease/article.htm#elevated_blood_levels_of_liver_enzymeshttps://www.produced_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_liver_disease/article.htm#elevated_blood_li$
- msdmanuals.com/home/liver-and-gallbladder-disorders/drugs-and-the-liver/liver-injury-caused-by-drugs
- [17]. http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug therapies/chemotherapy/sideeffects-of-chemotherapy/liver-damage-and-chemotherapy/?region=on
- [18]. Yasmin S, Kashmiri AM, Anwar K. Screening of aerial parts of *Abutilon bidentatum* for hepatoprotective activity in rabbits. J Med Plants Res. 2011; 5: 349-53.
- [19]. Sumitha P, Thirunalasundari T. Hepatoprotective activity of *Aegle marmelos* in CCl4 induced toxicity: An *in vivo* study. J Phyto. 2011; 3: 5-9.
- [20]. Vertichelvan T, Jegadeesan M, Senthil Palaniappan S. Diuretic and anti-inflammatory activities of Aerva lanata in rats. Indian J Pharm Sci. 2000; 62: 300-02
- [21]. Ilyas N, Sadiq M, Jehangir A. Hepatoprotective effect of garlic (*Allium sativum*) and milk thistle (silymarin) in isoniazid induced hepatotoxicity in rats. Biomedica 2011; 27: 166 -70.
- [22]. Hussain L, Akash MSH, Tahir M, Rehman K, Ahmed KZ. Hepatoprotective effects of methanolic extract of *Alcea rosea* against acetaminophen-induced hepatotoxicity in mice. Bangladesh J Pharmacol. 2014; 9: 322-27.
- [23]. Chandan BK, Saxena AK, Shukla S. Hepatoprotective potential of *Aloe barbadensis* Mill against carbontetrachloride induced hepatotoxicity. J Ethanopharmacol. 2007; 111: 560-66.
- [24]. Etim OE, Farombi EO, Usoh IF, Akpan EJ. The protective effect of *Aloe vera* juice on lindane induced hepatotoxicity and genotoxicity. Pak J Pharm Sci. 2006; 19: 333-37.
- [25]. Kumar A, Lakshman K, Kumar PA, Viswantha GL, Veerapur VP, Thippeswamy BS, Manoj B. Hepatoprotective activity of methanol extract of *Amaranthus caudatus* Linn. against paracetamol-induced hepatic injury in rats. J Chinese Integrative Med. 2011; 9: 194-200.
- [26]. Zeashan HA, Amresh GA, Satyawan SB, Venkateswara C. Hepatoprotective activity of *Amaranthus spinosus* in experimental animals. Food and Chem Toxicol. 2008; 46: 3417-21.
- [27]. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocininduced diabetic rats. Singapore Med J. 2006; 47: 670-75.
- [28]. Zhou D, Ruan J, Cai Y, Xiong Z, Fu W, Wei A. Antioxidant and hepatoprotective activity of ethanol extract of *Arachniodes exilis* (Hance) Ching. J Ethnopharmacol. 2010; 27: 232-37.
- [29]. Om FR, Kumar R, Mani T, Niyas MK, Kumar SB, Phaneendra P, Surendra B. Hepatoprotective activity of *Asparagus racemosus* root on liver damage caused by paracetamol in rats. Indian J Novel Drug Delivery. 2011; 3: 112-17.
- [30]. Kumar SV, Mishra SH. Hepatoprotective effect of *Baliospermum montanum* (Willd) Muell.- Arg against thioacetamide induced toxicity. Int J Compreh Pharm. 2012; 9: 1-4.
- [31]. Khan MA, Khan J, Ullah S, Malik SA, Shafi M. Hepatoprotective effects of *Berberis lycium*, *Galium aparine* and *Pistacia integerrima* in carbon tetrachloride (CCl4)-treated rats. J Postgrad Med Inst. 2008; 22: 19-25.
- [32]. Ahsan MR, Islam KM, Bulbul IJ. Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats. Eur J Sci Res. 2009; 37: 302-10.
- [33]. Rawat AK, Mehrotra S, Tripathi SC, Shome U. Hepatoprotective activity of *Boerhaavia diffusa* L. roots- A popular Indian ethnomedicine. J Ethnopharmacol. 1997; 56: 61-66.
- [34]. Yen MH, Weng TC, Liu SY, Chai CY, Lin CC. The hepato- protective effect of *Bupleurum kaoi*, an endemic plant to Taiwan, against dimethylnitrosamine-induced hepatic fibro- sis in rats. Biol Pharm Bull. 2005; 28: 442-48.
- [35]. Maaz A, Bhatti ASA, Maryam S, Afzal S, Ahmad M, Gilani AN. Hepatoprotective evaluation of *Butea monosperma* against liver damage by paracetamol in rabbits. Special Edit Annals. 2010; 16: 1-5.
- [36]. Singh S, Mehta A, Mehta P. Hepatoprotective activity of *Cajanus cajan* against carbon tetrachloride induced liver damage. Int J Pharm Pharmac Sci. 2011; 3: 1-7.
- [37]. Setty SR, Quereshi AA, Swamy V, Patil T, Prakash T, Prabhu K, Gouda V. Hepatoprotective activity of *Calotropis procera* flowers against paracetamol-induced hepatic injury in rats. Fitoterapia. 2007; 78: 451–54.
- [38]. Sadeque MZ, Begum ZA. Protective effect of dried fruits of *Carica papaya* on hepatotoxicity in rat. Bangladesh J Pharmacol. 2010; 5: 48-50.
- [39]. Sahreen S, Muhammad RK, Rahmat AK. Hepatoprotective effects of methanol extract of *Carissa opaca* leaves on CCl4- induced damage in rat. BMC Complem Altern Med. 2011; 11: 48-56.
- [40]. Hegde K, Joshi AB. Hepatoprotective and antioxidant effect of *Carissa spinarum* root extract against CCl4 and paracetamolinduced hepatic damage in rats. Bangladesh J Pharmacol. 2010; 5: 73-76.
- [41]. Bhakta T, Banerjee S, Mandal SC, Maity TK, Saha BP, Pal M. Hepatoprotective activity of *Cassia fistula* leaf extract. Phytomed. 2001; 8: 220-24
- [42]. Rani M, Emmanuel S, Sreekanth MR, Ignacimuthu S. Evaluation of *in vivo* antioxidant and hepatoprotective activity of *Cassia occidentalis* Linn. against paracetamol• induced liver toxicity in rats. Int J Pharm Pharmac Sci. 2010; 2: 67-70.

- [43]. Ahsan MR, Islam KM, Bulbul IJ. Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats. Eur J Sci Res. 2009; 37: 302-10.
- [44]. Qadir MI, Murad MSA, Ali M, Saleem M, Farooqi AA. Hepatoprotective effect of leaves of aqueous ethanol extract of *Cestrum nocturnum* against paracetamol-induced hepatotoxicity. Bangladesh J Pharmacol. 2014; 9: 167-70.
- [45]. Gupta AK, Chitme H, Dass SK, Misra N. Antioxidant activity of *Chamomile recutita* capitula methanolic extracts against CCl4induced liver injury in rats. J Pharmacol Toxicol. 2006; 1: 101-07.
- [46]. Saleem M, Ahmed B, Qadir MI, Rafiq M, Ahmad M, Ahmad B. Hepatoprotective effect of *Chenopodium murale* in mice. Bangladesh J Pharmacol. 2014; 9: 124-28.
- [47]. Selvam, NT, Yathi K, Kumar S, Saraswathy V, Venugopalan T, Jaya N. Hepatoprotective activity of methanolic extract of *Cinnamomum tamala* (Nees) against paracetamol intoxicated Swiss albino mice. Int J Pharma World Res. 2010; 2: 2-7.
- [48]. Haque R, Subhasish M, Sinha S, Modhurupa GR, Sinha D, Sunita. Hepatoprotective activity of *Clerodendron inerme* against paracetamol-induced hepatic injury in rats for pharmaceutical product. Int J Drug Dev Res. 2011; 3: 23-28.
- [49]. Sunilson J, Muthappan M, Das A, Suraj R, Varatharajan R, Promwichit P. Hepatoprotective activity of *Coccinia grandis* leaves against carbon tetrachloride induced hepatic injury in rats. Int J Pharmacol. 2009; 5: 222-27
- [50]. Thakare SP, Jain HN, Patil SD, Upadhyay UM. Hepatoprotec- tive effect of *Cocculus hirsutus* on bile duct ligation-induced liver fibrosis in Albino Wistar rats. Bangladesh J Pharmacol. 2009; 4: 126-30.
- [51]. Nafiu MO, Akanji MA, Yakubu MT. Effect of aqueous extract of *Cochlospermum planchonii* Rhizome on some kidney and liver functional indicies of albino rats. Afr J Tradit Complement Altern Med. 2011; 8: 22–26.
- [52]. Ali M, Qadir MI, Saleem M, Janbaz KH, Gul H, Hussain L, Ahmad B. Hepatoprotective potential of *Convolvulus arvensis* against paracetamol-induced hepatotoxicity.
- [53]. Qureshi NN, Kuchekar BS, Logade NA, Haleem MA. Antioxidant and hepatoprotective activity of *Cordia macleodii* leaves. Saudi Pharm J. 2009; 17: 299-302.
- [54]. Yen FL, Wu TH, Lin LT, Lin CC. Hepatoprotective and anti- oxidant effects of *Cuscuta chinensis* against acetaminophen- induced hepatotoxicity in rats. J Ethnopharmacol. 2007; 111: 123-28.
- [55]. Kiran PM, Raju AV, Rao BG. Investigation of hepatoprotective activity of *Cyathea gigantea* (Wall. ex. Hook.) leaves against paracetamol-induced hepatotoxicity in rats. Asian Pac J
- [56]. Srivastava A, Shivanandappa T. Hepatoprotective effect of the aqueous extract of the roots of *Decalepis hamiltonii* against ethanolinduced oxidative stress in rats. Hepatology Res. 2006; 35: 267–75
- [57]. Ahmad M, Mahmood Q, Gulzar K, Akhtar MS, Saleem M, Qadir MI. Antihyperlipidemic and hepatoprotective activity of *Dodonaea viscosa* leaves extracts in alloxan-induced diabetic rabbits (*Oryctolagus cuniculus*). Pak Vet J. 2011; 32: 50-54.
- [58]. Tabassum N, Agrawal S. Hepatoprotective activity of *Eclipta alba* hassk. against paracetamol induced hepatocellular damage in mice. Experimental Med. 2004; 11:278-80.
- [59]. Jose JK, Kuttan R. Hepatoprotective activity of *Emblica officinalis* and Chyavanprash. J Ethnopharmacol. 2000; 72: 129-35.
- [60]. Oh H, Kim DH, Cho JH, Kim YC. Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from *Equisetum arvense*. J
- [61]. Mohamed AF, Ali Hasan AG, Hamamy MI, Abdel-Sattar E. Antioxidant and hepatoprotective effects of *Eucalyptus maculata*. Med Sci Monit. 2005; 11: 426-31.
- [62]. Anusuya N, Raju K, Manian S. Hepatoprotective and toxicological assessment of an ethnomedicinal plant *Euphorbia fusiformis* Buch.-Ham. J Ethnopharmacol. 2010; 127: 463-67.
- [63]. Kamat CD, Khandelwal KR, Bodhankar SL, Ambawade SD, Mhetre NA. Hepatoprotective activity of leaves of *Feronia* elephantum Correa (Rutaceae) against carbon tetrachloride- induced liver damage in rats. J Nat Remed. 2003; 3: 148-54
- [64]. Donfack HJ, Kengap RT, Ngameni B, Chuisseu P, Tchana AN, Buonocore D, Ngadjui BT, Moundipa PF, Marzatico F. *Ficus cordata* Thunb (Moraceae) is a potential source of some hepatoprotective and antioxidant compounds. Pharmacologia 2011; 2:137-45.
- [65]. Ozbek H, Uğraş S, Dülger H, Bayram I, Tuncer I, Oztürk G, Oztürk A. Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia. 2003; 74: 317-19.
- [66]. Khan MA, Khan J, Ullah S, Malik SA, Shafi M. Hepatoprotective effects of *Berberis lycium*, *Galium aparine* and *Pistacia integerrima* in carbon tetrachloride (CCl4)-treated rats. J Postgrad Med Inst. 2008; 22: 19-25.
- [67]. Nayak SS, Jain R, Sahoo AK. Hepatoprotective activity of *Glycosmis pentaphylla* against paracetamol induced hepatotoxicity in Swiss albino mice. Pharm Biol. 2011; 49: 111-17.
- [68]. Al-Razzuqi R, Al-Jawad F, Al- Hussaini J, Al-Jeboori A. Hepatoprotective effect of *Glycyrrhiza glabra* in carbon tetrachlorideinduced model of acute liver injury. J Phys Pharm Adv. 2012; 2: 259-63.
- [69]. Jamshidzadeh A, Fereidooni F, Salehi Z, Niknahad H. Hepatoprotective activity of *Gundelia tourenfortii*. J Ethnopharmacol. 2005; 101: 233-37.
- [70]. Huang B, Ban X, He J, Zeng H, Zhang P, Wang Y. Hepatoprotective and antioxidant effects of the methanolic extract from *Halenia elliptica*. J Ethnopharmacol. 2010; 131: 276-81.
- [71]. Ahmad M, Erum S. Hepatoprotective studies on *Haloxylon salicornicum*: A plant from Cholistan desert. Pak J Pharmac Sci. 2011; 24: 377-82.
- [72]. Prabhakaran M, Rangasamy DT. Protective effect of *Hemidesmus indicus* against rifampicin and isoniazid induced hepatotoxicity in rats. Fitoterapia. 2000; 71: 55-59.
- [73]. Dhanaraj TS, Gowthami R, Rajlakshmi S, Murugaiah K. Antihepatotoxicity of *Hygrophila auriculata* on CCl4 induced hepatotoxicity in rats . Asian J Res Pharm Sci. 2012; 2: 140-42.
- [74]. Wang N, Li P, Wang Y, Peng W, Wu Z, Tan S, Liang S, Shen X, Su W. Hepatoprotective effect of *Hypericum japonicum* extract and its fractions. J Ethnopharmacol. 2008; 116: 1-6.
- [75]. Babalola O, Ojo OE, Oloyede, FA. Hepatoprotective activity of aqueous extract of the leaves of *Hyptis suaveolens* on acetaminophen-induced hepatotoxicity in rabbits. Res J Chem Sci. 2011; 1: 85-88.
- [76]. Bag AK, Mumtaz SMF. Hepatoprotective and nephroprotec- tive activity of hydroalcoholic extract of *Ipomoea staphylina* leaves. Bangladesh J Pharmacol. 2013; 8:263-68.
- [77]. Garba HS, Sambo N, Bala U. The effect of the aqueous extract of *Kohautia grandiflora* on paracetamol induced liver damage in albino rats. Nigerian J Physiol Sci. 2009; 24: 17–23.
- [78]. Wu Y, Yang L, Wang F, Wu X, Zhou C, Shi S, Mo J, Zhao Y. Hepatoprotective and antioxidative effects of total phenolics from Laggera pterodonta on chemical-induced injury in primary cultured neonatal rat hepatocytes. Food Chem Toxicol. 2007; 45: 1349-55.

- [79]. Khan RA, Khan MA, Ahmed M, Sahreen S, Shah NA, Shah MS, Bokhari J, Rashid U, Ahmad B, Jan S. Hepatoprotection with a chloroform extract of *Launaea procumbens* against CCl4-induced injuries in rats. BMC Comp Alternative Med. 2012; 12: 114-19.
- [80]. Afaf A, Nuha HS, Mohammed AH. Hepatoprotective effect of *Lepidium sativum* against carbon tetrachloride induced damage in rats. Res J Ani Vet Sci. 2008; 3: 20-28.
- [81]. Ahmed B, Alam T, Khan SA. Hepatoprotective activity of Luffa echinata fruits. J Ethnopharmacol. 2001; 76: 187-89.
- [82]. Jain A, Soni M, Deb L, Jain A, Rout SP, Gupta VB, Krishna KL. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of *Momordica dioica* Roxb. leaves. J Ethnopharmacol. 2008; 115: 61-66.
- [83]. Rajendran R, Hemalatha S, Akasakalai K, MadhuKrishna CH, Sohil B, Sundaram M. Hepatoprotective activity of *Mimosa pudica* leaves against carbon tetrachloride induced toxicity. J Nat Prod. 2009; 2: 116-22.
- [84]. Pari L, Kumar NA. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats. J Med Food. 2002; 5: 171-77
- [85]. Gani SM, John SA. Evalution of hepatoprotective effect of Nigella sativa L. Int J Pharma Pharmac Sci. 2013; 5: 12-19
- [86]. Lahon K, Das K. Hepatoprotective activity of *Ocimum sanctum* alcoholic leaf extract against paracetamol-induced liver damage in albino rats. Pharmacognosy Res. 2011; 3: 13–18.
- [87]. Okwuosa CN, Udeani TK, Umeifekwem JE, Conuba E, Anioke IE, Madubueze RE. Hepatoprotective effect of methanolic fruit extracts of *Phoenix dactylifera* (Arecaceae) on thioacetamide induced liver damage in rats. Am J Phytomed Clinl Ther. 2014; 2: 290-300.
- [88]. Shah VN, Deval K. Hepatoprotective activity of leaves of *Parkinsonia aculeata* Linn against paracetamol induced hepatotoxicity in rats. Int J Pharma. 2011; 1: 59-63.
- [89]. Srirama R, Deepak HB, Senthilkumar U, Ravikanth G, Gurumurthy BR, Shivanna MB, Chandrasekaran CV, Agarwal A, Shaanker RU. Hepatoprotective activity of Indian *Phyllanthus*. Pharm Biol. 2012; 50: 948-53.
- [90]. Ahsan MR, Islam KM, Bulbul IJ. Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats. Eur J Sci Res. 2009; 37: 302-10.
- [91]. Matsuda H, Ninomiya K, Morikawa T, Yasuda D, Yamaguchi I, Yoshikawa M. Hepatoprotective amide constituents from the fruit of *Piper chaba*: Structural requirements, mode of action, and new amides. Bio Med Chem. 2009; 17:7313-23.
- [92]. Arsul VA, Wagh SR, MAYEE RV. Hepatoprotective activity of livergen, a polyherbal formulation against carbon tetrachloride induced hepatotoxicity in rats. Int J Pharma Pharmac Sci. 2011; 3: 228-31.
- [93]. Malar V, Mettilda M. Hepatoprotective activity of *Phyllanthus emblica* against paracetamol induced hepatic damage in Wister albino rats. Afri J Basic Applied Sci. 2009; 1: 21-25.
- [94]. Joshi UP, Mishra SH. In vitro antioxidant and hepatoprotective activity of isolated compounds from Pistacia integerrima. Aus J Medical Herbalism. 2010; 22: 22-34.
- [95]. Kanchana N, Sadiq AM. Hepatoprotective effect of *Plumbago zeylanica* on paracetamol induced liver toxicity in rats. Int J Pharm Pharmac Sci. 2011; 3: 32-39.
- [96]. Ahsan MR, Islam KM, Bulbul IJ. Hepatoprotective activity of methanol extract of some medicinal plants against carbon tetrachloride-induced hepatotoxicity in rats. Eur J Sci Res. 2009; 37: 302-10.
- [97]. Tabassum N, Agrawal S. Hepatoprotective activity of *Eclipta alba* hassk. against paracetamol induced hepatocellular damage in mice. Experimental Med. 2004; 11: 278-80.
- [98]. Babita MH, Chhaya G, Goldee P. Hepatoprotective activity of *Rubia cordifolia*. Pharmacologyonline. 2007; 3: 73-79.
- [99]. Saleem M, Ahmed B, Karim M, Ahmed S, Ahmad M, Qadir MI, Syed NIH. Hepatoprotective effect of aqeous methanolic extract of *Rumex dentatus* in paracetamol induced hepato- toxicity in mice. Bangladesh J Pharmacol. 2014; 9:284-89.
- [100]. Ibrahim M, Khaja MN, Aara A, Khan AA, Habeeb MA, Devi YP, Narasu ML, Habibullah M. Hepatoprotective activity of Sapindus mukorossi and Rheum emodi extracts: In vitro and in vivo studies. World J Gastroenterol. 2008; 14:2566–71.
- [101]. Achuthan CR, Babu BH, Padikkala J. Antioxidant and hepatoprotective effects of *Rosa damascena*. Pharmaceut. Biol. 2003. 41: 357-61.
- [102]. Raju K, Anbuganapathi G, Gokulakrishnan V, Rajkapoor B, Jayakar B, Manian S. Effect of dried fruits of Solanum nigrum LINN against CCl4-induced hepatic damage in rats. Biol Pharm Bull. 2003; 26: 1618-19.
- [103]. Tasduq SA, Singh K, Satti NK, Gupta DK, Suri KA, Johri RK. *Terminalia chebula* (fruit) prevents liver toxicity caused by subchronic administration of rifampicin, isoniazid and pyrazinamide in combination. Hum Exp Toxicol. 2006; 25: 111-18.
- [104]. Gujrati V, Patel N, Rao VN, Nandakumar K, Gouda TS, Shalam MD, Kumar SM. Hepatoprotective activity of alcoholic and aqueous extracts of leaves of *Tylophora indica* (Linn.) in rats. Indian J Pharmacol. 2007; 39: 43-47.
- [105]. Sharma SK, Suman N, Vasudeva N. Hepatoprotective activity of Vitis vinifera root extract against carbon tetrachloride- induced liver damage in rats. Acta Pol Pharm. 2012; 69: 933- 37.
- [106]. Verma N, Khosa RL. Hepatoprotective activity of leaves of Zanthoxylum armatum DC in CCl4 induced hepatotoxicity in rats. Indian J Biochem Biophys. 2010; 47: 124-27. 2566–71.
- [107]. M.G.Rajesh,M.S.Latha, Protective Activityof Glycyrrhiza Glabra Linn. On Carbantetrachloride-Induced Peroxidative Damage, Indian Journal Pharmacol, October 2004, Vol 38, 284-287.

Dr. Mahaveer Dhobi"Plant Based Treatment of Hepatotoxicity." International Journal Of Pharmaceutical Research And Analysis, Vol. 03, No. 02, 2018, pp. 10-23.

www.ijpra.com